Logo
Mar 21, 2022

圆柱坐标下的拉普拉斯算子

拉普兰德在使用圆规前必须掌握的圆柱坐标下拉普拉斯算子的推导。

圆柱坐标与笛卡尔坐标关系如下:

$$x=r\cos \phi \tag1 \\ y=r\sin \phi$$

把上下平方相加,得到: $$ F(x,y,r)=x^2+y^2-r^2=0\tag2 $$ 接下来只介绍对于$x$的部分,$y$部分方法完全一致,根据隐函数求偏导方法(见《一些数学》): $$ \f rx=-\frac{\partial F/\partial x}{\partial F/\partial r}=-\frac{2x}{-2r}=\frac xr=\cos\phi\tag3 $$ (1)式两边对$x$求偏导,并带入(3)式结果: $$ \align{1&=\f rx\cos\phi+\f{\cos\phi}xr\\&=\cos^2\phi-r\sin\phi\f \phi x\\\f \phi x&=-\frac{\sin\phi}r }\tag4 $$ 显然,对于一个指定的点,$(x,y)$和$(r,\phi)$两种表示一一对应,必然有: $$\psi(r,\phi)=\psi(r(x,y),\phi(x,y))$$ 应用链式法则(《一些数学》),带入(3)、(4)得到: $$ \align{\f \psi x&=\f \psi r \f rx+\f \psi \phi \f \phi x\\&=\f \psi r \cos\phi-\f \psi \phi\frac{\sin\phi}r \tag5} $$ 我们接着再求一次偏导,同样有(把一阶偏导看做一个函数): $$\f \psi x(r,\phi)=\f \psi x(r(x,y),\phi(x,y))$$ 又用链式法则: $$ \align{\f{^2\psi}{x^2}=\f {\lf \psi x}{x}&=\f {\lf \psi x} r \cos\phi-\f {\lf \psi x} \phi\frac{\sin\phi}r } $$ 把(5)带入其中,并使用乘法求导法则: $$ \align{\f{^2\psi}{x^2}=&\f {\left(\f \psi r \cos\phi-\f \psi \phi\frac{\sin\phi}r\right)} r \cos\phi-\f {\left(\f \psi r \cos\phi-\f \psi \phi\frac{\sin\phi}r\right)} \phi\frac{\sin\phi}r \\ =&\left(\f{^2\psi}{r^2}\cos\phi-\f{^2\psi}{\phi\partial r}\frac{\sin\phi}r+\f{\psi}{\phi}\frac{\sin\phi}{r^2}\right)\cos\phi\\&-\left(\f{^2\psi}{r\partial\phi}\cos\phi-\f\psi r\sin\phi-\f{^2\psi}{\phi^2}\frac{\sin \phi}{r}-\f{\psi}{\phi}\frac{\cos\phi}{r^2}\right)\frac{\sin\phi}r\\=&\f{^2\psi}{r^2}\cos^2\phi-\f{^2\psi}{r\partial\phi}\frac{2\sin\phi\cos\phi}{r}+\f{^2\psi}{\phi^2}\frac{\sin^2\phi}{r^2}+\f\psi r\frac{\sin^2\phi}{r}+\f\psi\phi\frac{2\sin\phi\cos\phi}{r^2}} $$ 同理,对$y$做相同的事情: $$ \f{^2\psi}{y^2}=\f{^2\psi}{r^2}\red{\sin^2}\phi\red{+}\f{^2\psi}{r\partial\phi}\frac{2\sin\phi\cos\phi}{r}+\f{^2\psi}{\phi^2}\frac{\red{\cos^2}\phi}{r^2}+\f\psi r\frac{\red{\cos^2}\phi}{r}\red-\f\psi\phi\frac{2\sin\phi\cos\phi}{r^2} $$ 合体!写成算符形式 $$ \f{^2}{x^2}+\f{^2}{y^2}=\f{^2}{r^2}+\frac1r\f{}{r}+\frac1{r^2}\f{^2}{\psi^2} $$ 去吃千层酥罢!


我打过最长的公式(使用自定义宏简化后):

\align{\f{^2\psi}{x^2}=&\f {\left(\f \psi r \cos\phi-\f \psi \phi\frac{\sin\phi}r\right)} r \cos\phi-\f {\left(\f \psi r \cos\phi-\f \psi \phi\frac{\sin\phi}r\right)} \phi\frac{\sin\phi}r \\\\ =&\left(\f{^2\psi}{r^2}\cos\phi-\f{^2\psi}{\phi\partial r}\frac{\sin\phi}r+\f{\psi}{\phi}\frac{\sin\phi}{r^2}\right)\cos\phi\\\\&-\left(\f{^2\psi}{r\partial\phi}\cos\phi-\f\psi r\sin\phi-\f{^2\psi}{\phi^2}\frac{\sin \phi}{r}-\f{\psi}{\phi}\frac{\cos\phi}{r^2}\right)\frac{\sin\phi}r\\\\=&\f{^2\psi}{r^2}\cos^2\phi-\f{^2\psi}{r\partial\phi}\frac{2\sin\phi\cos\phi}{r}+\f{^2\psi}{\phi^2}\frac{\sin^2\phi}{r^2}+\f\psi r\frac{\sin^2\phi}{r}+\f\psi\phi\frac{2\sin\phi\cos\phi}{r^2}}